An Efficient Spectral-Projection Methodfor the Navier–Stokes Equationsin Cylindrical GeometriesII. Three-Dimensional Cases
نویسندگان
چکیده
An efficient and accurate numerical scheme is presented for the three-dimensional Navier–Stokes equations in primitive variables in a cylinder. The scheme is based on a spectral-Galerkin approximation for the space variables and a second-order projection scheme for time. The new spectral-projection scheme is implemented to simulate unsteady incompressible flows in a cylinder. c © 2002 Elsevier Science (USA)
منابع مشابه
An Efficient Spectral-Projection Method for the Navier–Stokes Equations in Cylindrical Geometries
An efficient and accurate numerical scheme is presented for the axisymmetric Navier–Stokes equations in primitive variables in a cylinder. The scheme is based on a new spectral-Galerkin approximation for the space variables and a secondorder projection scheme for the time variable. The new spectral-projection scheme is implemented to simulate the unsteady incompressible axisymmetric flow with a...
متن کاملFormulation of a Galerkin spectral element–Fourier method for three-dimensional incompressible flows in cylindrical geometries
A primitive-variable formulation for simulation of time-dependent incompressible flows in cylindrical coordinates is developed. Spectral elements are used to discretise the meridional semi-plane, coupled with Fourier expansions in azimuth. Unlike previous formulations where special distributions of nodal points have been used in the radial direction, the current work adopts standard Gauss–Lobat...
متن کاملA Semi-Lagrangian High-Order Methodfor Navier–Stokes Equations
We present a semi-Lagrangian method for advection–diffusion and incompressible Navier–Stokes equations. The focus is on constructing stable schemes of secondorder temporal accuracy, as this is a crucial element for the successful application of semi-Lagrangian methods to turbulence simulations. We implement the method in the context of unstructured spectral/hp element discretization, which allo...
متن کاملThe Influence of Horizontal Boundaries on Ekman Circulation and Angular Momentum Transport in a Cylindrical Annulus
We present numerical simulations of circular Couette flow in axisymmetric and fully three-dimensional geometry of a cylindrical annulus inspired by Princeton MRI liquid gallium experiment. The incompressible Navier-Stokes equations are solved with the spectral element code Nek5000 incorporating realistic horizontal boundary conditions of differentially rotating rings. We investigate the effect ...
متن کاملScientific Flow Field Simulation of Cruciform Missiles Through the Thin Layer Navier Stokes Equations
The thin-layer Navier-Stokes equations are solved for two complete missile configurations on an IBM 3090-200 vectro-facility supercomputer. The conservation form of the three-dimensional equations, written in generalized coordinates, are finite differenced and solved on a body-fitted curvilinear grid system developed in conjunction with the flowfield solver. The numerical procedure is based on ...
متن کامل